Bhilai (Chhattisgarh)

An Autonomous Institute Approved by AICTE, New Delhi Affiliated to CSV Technical University, Bhilai (Shri Gangajali Education Society) Estd, 1999 All B Tech Courses'Accredited by NBA, New Delhi Accredited by NAAC with "A" Grade

श्री शंकराचार्थ टेक्नीकल कैम्पस _{मिलाई (क्लीसमद)}

> / स्वशासी संस्थान \ NIRF-2020 Rank (Band 251-300) An ISO 9001:2015 Certified Institution

	SCHEME OF EXAMINATION									
	B. Tech- 2 nd Year				Semester: 4 th					
Branch: Computer Science and Business Systems										
S N	Subject Norma	Subject	Per	Periods per week		Scheme of Exam		am	Total	Credit
5. IN.	Subject Name	Code	T	т	D	Theo	ry/Pract	ical	Marks	$\frac{L+(1+P)}{2}$
			L	1	Г	ESE	СТ	ТА		
1	Design And Analysis Of Algorithms	CS112401	3	1	-	80	20	25	125	3
2	Operating Systems	CS112402	3	1	-	80	20	25	125	3
3	Compiler Design	CS112403	3	1	-	80	20	25	125	3
4	Software Engineering	CS112404	3	1	-	80	20	25	125	3
5	Operations Research	CS112405	3	0	-	80	20	25	125	2
6	Introduction To Innovation, IP Management & Entrepreneurship	CS112406	3	0	-	80	20	25	125	2
7	Design And Analysis Of Algorithms Lab	CS112491		-	2	40	-	20	60	1
8	Operating Systems Lab	CS112492		-	2	40	-	20	60	1
9	Software Engineering Lab	CS112493		-	2	40	-	20	60	1
10	Operations Research Lab	CS112494		-	2	40		20	60	1
	Essence of Indian Traditional Knowledge	CS112496				-	-	10	10	
	Total		18	4	8	640	120	240	1000	20

Note:

 L-Lecture
 T-Tutorial
 P-Practical

 CT-Class Test
 TA-Teachers Assessment
 ESE-End Semester Exam

 Note:
 (1) The teaching in the 1st and 2nd Semester will be divided in two groups consisting of various branches.

 (2) Applied Mathematics-I will be taught to both the groups in the first semester.

(3) Self-Learning –I will be conducted by the humanities / relevant discipline as decided by the Director.

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

Bhilai (Chhattisgarh)

An Autonomous Institute Approved by AICTE, New Delhi AII B Te Affiliated to CSV Technical University, Bhilai

Estd, 1999 All B Tech Courses'Accredited by NBA, New Delhi Accredited by NAAC with "A" Grade मिताई (छत्तीसगद) / स्वशासी संस्थान NIRF-2020 Rank (Band 251-300)

CONTRACTO

An ISO 9001:2015 Certified Institution

टेवनीकत कैस्पश

Subject Code CS112401	Design And Analysis Of Algorithms	L = 3	T = 1	P = 0	Credits = 3
	ESE	СТ	ТА	Total	ESE Duration
Examination Scheme	80 20 25		25	125	3 Hours
	Minimum number of class tests to be conducted=02			Minimum	Assignments=02

Course Objective	Course Outcomes
 The Objective of this course is: To understand and apply the algorithm analysis techniques. To critically analyze the efficiency of alternative algorithmic solutions for the same problem. To understand different algorithm design techniques. To understand the limitations of 	 CO1 Design algorithms for various computing problems. CO2 Analyze the time and space complexity of algorithms. CO3 Critically analyze the different algorithm design techniques for a given problem. CO4 Modify existing algorithms to improve efficiency.
Algorithmic power.	CO5 To Understand how to apply various algorithms.

UNIT – I Introduction: Characteristics of Algorithm. Analysis of Algorithm: Asymptotic analysis of Complexity Bounds – Best, Average and Worst-Case behavior; Performance Measurements of Algorithm, Time and Space Trade-Offs, Analysis of Recursive Algorithms through Recurrence Relations: Substitution Method, Recursion Tree Method and Masters' Theorem

UNIT – II Fundamental Algorithmic Strategies: Brute-Force, Heuristics, Greedy, Dynamic Programming, Branch and Bound and Backtracking methodologies; Illustrations of these techniques for Problem-Solving, Bin Packing, Knapsack, Travelling Salesman Problem.

UNIT – III: Graph and Tree Algorithms: Traversal algorithms: Depth First Search (DFS) and Breadth First Search (BFS); Shortest path algorithms, Transitive closure, Minimum Spanning Tree, Topological sorting, Network Flow Algorithm.

UNIT – IV: Tractable and Intractable Problems: Computability of Algorithms, Computability classes – P, NP, NP-complete and NP-hard. Cook's theorem, Standard NP-complete problems and Reduction techniques.

UNIT – V Advanced Topics: Approximation algorithms, Randomized algorithms, Class of problems beyond NP – P SPACE, Introduction to Quantum Algorithms.

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

Text Books:

S. No.	Title	Author(s)	Publisher
4	Fundamental of Computer	E. Horowitz and S.	
1	Algorithms,	Sahni.	

S. No.	Title	Author(s)	Publisher
	Introduction to Algorithms,	T. H. Cormen, C. E.	
1		Leiserson and R. L.	
		Rivest.	
2	Computer Algorithms:	Introduction to Design	
2		and Analysis, S. Baase.	
3	The Art of Computer Programming, Vol. 1, Vol. 2 and Vol. 3, .	D. E. Knuth	

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

SHRI SHANKARACHA Bhilai (C An Autono Approved by	RYA TECHNICAL hhattisgarh) mous Institute	All B Tech Courses'Ac	Education Bociety) td, 1995 credited by NBA, New	ziæzi	वार्थ टेक जिलाई (छन् / स्वशासी NIRF-2020 Ran	जीकल कैम्पस तीसगढ़) संस्थान k (Band 251-300) Cartified lastitution
Subject Code CS112402	Operating	g Systems	L = 3	T = 1	P = 0	Credits = 3
	E	SE	СТ	ТА	Total	ESE Duration
Examination	80		20	25	125	3 Hours
Scheme	Minimum	um number of class tests to be conducted=02				Assignments=02

Course Objective	Course Outcomes
 Students will learn how Operating System is Important for Computer System. To make aware of different types of Operating Systemand their services. To learn different process scheduling algorithms and synchronization techniques to achieve better performance of a 	
 computer system. 4. To know virtual memoryconcepts. 5. To learn secondary memory Management. 	CO4 To get knowledge about Deadlock handling, Memory Management techniquesCO5 To get knowledge about Virtual Memory, File System

UNIT – I Introduction: Concept of Operating Systems (OS), Generations of OS, Types of OS, OS Services, Interrupt handling and System Calls, Basic architectural concepts of an OS, Concept of Virtual Machine, Resource Manager view, process view and hierarchical view of an OS.

UNIT – II Processes: Definition, Process Relationship, Different states of a Process, Process State transitions, Process Control Block (PCB), Context switching.

Thread: Definition, Various states, Benefits of threads, Types of threads, Concept of multithreads. Process Scheduling: Foundation and Scheduling objectives, Types of Schedulers, Scheduling criteria: CPU utilization, Throughput, Turnaround Time, Waiting Time, Response Time.

Scheduling algorithms: Pre-emptive and non-pre-emptive, FCFS, SJF, RR; Multiprocessor scheduling: Real Time scheduling: RM and EDF.

Inter-process Communication: Concurrent processes, precedence graphs, Critical Section, Race Conditions, Mutual Exclusion, Hardware Solution, Semaphores, Strict Alternation, Peterson's Solution, The Producer / Consumer Problem, Event Counters, Monitors, Message Passing, Classical IPC Problems: Reader's & Writer Problem, Dinning Philosopher Problem, Barber's shop problem.

UNIT – III: Deadlocks: Definition, Necessary and sufficient conditions for Deadlock, Deadlock Prevention, Deadlock Avoidance: Banker's algorithm, Deadlock detection and Recovery.

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

Concurrent Programming: Critical region, conditional critical region, monitors, concurrent languages, communicating sequential process (CSP); Deadlocks - prevention, avoidance, detection and recovery.

UNIT – IV: Memory Management: Basic concept, Logical and Physical address maps, Memory allocation: Contiguous Memory allocation – Fixed and variable partition–Internal and External fragmentation and Compaction.

Virtual Memory: Basics of Virtual Memory – Hardware and control structures – Locality of reference, Page allocation, Partitioning, Paging, Page fault, Working Set, Segmentation, Demand paging, Page Replacement algorithms: Optimal, First in First Out (FIFO), Second Chance (SC), Not recently used (NRU) and Least Recently used (LRU).

UNIT – V: I/O Hardware: I/O devices, Device controllers, Direct Memory Access, Principles of I/O.

File Management: Concept of File, Access methods, File types, File operation, Directory structure, File System structure, Allocation methods (contiguous, linked, indexed),Free-space management (bit vector, linked list, grouping), directory implementation(linear list, hash table), efficiency and performance.

Disk Management: Disk structure, Disk scheduling - FCFS, SSTF, SCAN, C-SCAN, Disk reliability, Disk formatting, Boot-block, Bad blocks.

Case study: UNIX OS file system, shell, filters, shell programming, programming with the standard I/O, UNIX system calls.

Text Books:

S. No.	Title	Author(s)	Publisher
1	Operating System Concepts Essentials	Abraham Silberschatz, Peter Baer	Galvin and Greg Gagne.

S. No.	Title	Author(s)	Publisher
1	Operating Systems: Internals and Design Principles	William Stallings	
2	Operating System: A Design-oriented Approach.	Charles Patrick Crowley	
3	Operating Systems: A Modern Perspective.	Gary J. Nutt	

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

SHRI SHANKARACHA Bhilai (Cl An Autono	RYA TECHNICAL CAMPU hattisgarh) mous Institute	US Antonio Society hri Gangajali Education Society Estd, 1999	ो शंकरा "	चार्थ टेव गिलाई (छन् / स्वशासी	नीकल कॅम्पस चीरम्ब संस्थान \
Approved by Affiliated to CSV Te	AICTE, New Delhi Ali B Tech chnical University, Bhilai Acc	Courses Accredited by NBA, redited by NAAC with "A" Gr	New Delhi ade	NIRF-2020 Ran An ISO 9001:2015	k (Band 251-300) Certified Institution
Subject Code CS112403	Compiler Design	n L=:	3 T = 1	P = 0	Credits = 3
	ESE	СТ	ТА	Total	ESE Duration
Examination	80	20	25	125	3 Hours
Scheme	Minimum numbe condu	r of class tests to ucted=02	o be	Minimum	Assignments=02

Course Objectives	Course Outcomes
 To provide the skills needed for building compilers for various situations that one may encounter in a career in Computer Science. To understanding the fundamental principles in compiler design. 	 After undergoing the course, students will be able to: Explain the concepts of Compilers and roles of the lexical analyzer. Apply the concepts of different Parsing techniques and implement the knowledge to Yacc tool. Develop syntax directed translation schemes. Implement the principles of scoping, parameter passing and runtime memory management. Use the new code optimization techniques to improve the performance of a program in terms of speed & space and develop algorithms to generate code for a target machine.

UNIT I: Introduction : Introduction to Compiler, single and multi-pass compilers, Translators, Phases of Compilers, Compiler writing tools, Finite Automata and Lexical Analyzer: Role of Lexical Analyzer, Specification of tokens, Recognition of tokens, Regular expression, Finite automata, from regular expression to finite automata, transition diagrams, Implementation of lexical analyzer with LEX.

UNIT II: Syntax Analysis and Parsing Techniques : Context free grammars, Bottom-up parsing and top down parsing, Top down Parsing : elimination of left recursion, recursive descent parsing, Predicative Parsing, Bottom Up Parsing : Operator precedence parsing, LR parsers, Construction of SLR, Canonical LR and LALR parsing tables, Construction of SLR parse tables for Ambiguous grammar, parser generator- YACC, error recovery in top down and bottom up parsing.

UNIT III: Syntax Directed Translation & Intermediate Code Generation : Synthesized and inherited attributes, Construction of syntax trees, bottom up and top down evaluation of attributes, Sattributed and L attributed definitions ,Postfix notation; Three address codes, quadruples, triples and indirect triples, Translation of assignment statements, control flow, Boolean expression and Procedure Calls.

UNIT IV: Run-time Environment : Storage organization, activation trees, activation records, allocation strategies, Parameter passing symbol table, dynamic storage allocation.

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

SHRI SHANKARACHARYA TECHNICAL CAMPUS Bhilai (Chhattisgarh) An Autonomous Institute Approved by AICTE, New Delhi Affiliated to CSV Technical University, Bhilai Affiliated to CSV Technical University, Bhilai

UNIT V: Code Optimization and Code Generation : Basic blocks and flow graphs, Optimization of basic blocks, Loop optimization, Global data flow analysis, Loop invariant computations. Issue in the design of Code generator, register allocation, the target machine, and simple Code generator.

Text Books:

S. No.	Title	Author(s)	Publisher
	Compilers Principles, Techniques and	Alfred V. Aho, Ravi	Addison Wasley
	Tools	Sethi and Ullman J.D	Addison westey
	Principle of Compiler Design	Alfred V. Aho and J.D.	Narosa Publication
	Timerple of Compiler Design	Ullman	Inatosa i ubilcation

S. No.	Title	Author(s)	Publisher
	Introduction to Compiler Techniques	J.P. Bennet	Tata McGraw-Hill
	Compiler construction (Theory and Practice)	A. Barret William and R.M., Bates	Galgotia Publication
	Compiler Design	O.G. Kakde	Laxmi Publication

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

SHRI SHANKARACHA Bhilai (C	RYA TECHNICAL CAMPUS	A	शंकशच	ार्य टेवर मिलाई (छन	नीकल कॅम्प स _{तीरागड})
An Autono	mous Institute	all Education Society) Istd. 1999		/ स्वशासी	संस्थान \
Approved by Affiliated to CSV Te	AICTE, New Delhi Ali B Tech Courses'/ chnical University, Bhilai Accredited by	Accredited by NBA, Nev NAAC with "A" Grade	v Delhi Ar	NIRF-2020 Rani n ISO 9001:2015	k (Band 251-300) Certified Institution
Subject Code CS112404	Software Engineering	L=3	T = 1	$\mathbf{P} = 0$	Credits = 3
	ESE	СТ	ТА	Total	ESE Duration
Examination	80	20	25	125	3 Hours
Scheme	Minimum number of c conducted=	class tests to =02	be	N Assi	Vinimum gnments=02

Course Objectives	Course Outcomes
 To introduce software project and to understand about the different software processes & To introduce ethical and professional issues and to explain why they are concern to software engineers Understanding good coding practices, including documentation, contracts, regression tests and daily builds. Their uses. To understand how Software engineering & Project Management is concerned with theories, methods and tools for professional software development. 	 After completion of this course, the students would be able to : Developing some basic level of software architecture/design Extracting and analyzing software requirements specifications for different projects Select and implement different software development process models Defining the concepts of software quality and reliability on the basis of International quality standards. Analyzing software risks and risk management strategies Applying different testing and debugging techniques and analyzing their effectiveness.
	of Software project management concepts like cost estimation, scheduling and reviewing the progress.
	<u> </u>

UNIT - I Introduction: Programming in the small vs. programming in the large; software project failures and importance of software quality and timely availability; engineering approach to software development; role of software engineering towards successful execution of large software projects; emergence of software engineering as a discipline.

UNIT – II Software Project Management: Basic concepts of life cycle models – different models and milestones; software project planning – identification of activities and resources; concepts of feasibility study; techniques for estimation of schedule and effort; software cost estimation models and concepts of software engineering economics; techniques of software project control and reporting; introduction to measurement of software size; introduction to the concepts of risk and its mitigation; configuration management

UNIT – III: Software Quality and Reliability: Internal and external qualities; process and product quality; principles to achieve software quality; introduction to different software quality models like McCall, Boehm, FURPS / FURPS+, Dromey, ISO – 9126; introduction to Capability Maturity Models

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

(CMM and CMMI); introduction to software reliability, reliability models and estimation.

Software Requirements Analysis, Design and Construction: Introduction to Software Requirements Specifications (SRS) and requirement elicitation techniques; techniques for requirement modeling – decision tables, event tables, state transition tables, Petri nets; requirements documentation through use cases; introduction to UML, introduction to software metrics and metrics based control methods; measures of code and design quality.

UNIT – IV: Object Oriented Analysis, Design and Construction: Concepts -- the principles of abstraction, modularity, specification, encapsulation and information hiding; concepts of abstract data type; Class Responsibility Collaborator (CRC) model; quality of design; design measurements; concepts of design patterns; Refactoring; object oriented construction principles; object oriented metrics.

UNIT – V: Software Testing: Introduction to faults and failures; basic testing concepts; concepts of verification and validation; black box and white box tests; white box test coverage – code coverage, condition coverage, branch coverage; basic concepts of black-box tests – equivalence classes, boundary value tests, usage of state tables; testing use cases; transaction based testing; testing for non-functional requirements – volume, performance and efficiency; concepts of inspection.

Text Books:

S. No.	Title	Author(s)	Publisher
1	Software Engineering	Ian Sommerville	

S. No.	Title	Author(s)	Publisher
1	Fundamentals of Software Engineering,	Carlo Ghezzi, Jazayeri Mehdi	Mandrioli Dino
2	Software Requirements and Specification:	A Lexicon of Practice, Principles and Prejudices,	Michael Jackson
3	The Unified Development Process	Ivar Jacobson, Grady Booch,	James Rumbaugh

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

SHRI SHANKA	Bhilai (Ch	RYA TECHNICAL hhattisgarh)	CAMPUS	🏓 श्री ।	शंकश	वार्थ टेव मिलाई (छ	नीकल कैम्प्स _{तीसगद})
A	n Autono	mous Institute	(Bhri Gangajali) Esti	Education Society) 4, 1999		/ स्वशासी	संस्थान \
Affiliate	Approved by a ed to CSV Tec	AICTE, New Delhi chnical University, Bhilai	All B Tech Courses*Acc Accredited by N	redited by NBA, New AAC with "A" Grade	v Delhi	NIRF-2020 Ran An ISO 9001:2015	k (Band 251-300) Certified Institution
Subject C CS1124	code 05	Operations	Research	L = 3	T = 0	P = 0	Credits = 2
		ES	E	СТ	TA	Total	ESE Duration
Examinat	tion	80		20	25	125	3 Hours
Schem	e	Minimum number of class tests to be			be	Minimum	
			conducted=0	2		Assi	ignments=02

Course Objectives	Course Outcomes
The objective of this course is to impart an understanding the mathematical tools that are needed to solve optimization problems.	 On successful completion of the course, the student will be able to: 1. Formulate and solve real-world problems as linear programs for better decision-making. 2. Solve specialized linear programming models like the transportation and assignment Models. 3. Model a dynamic system as a queuing model and compute important performance measures. 4. Use CPM and PERT techniques, to plan, schedule and control project activities. 5. Propose the best strategy using decision making methods under game theory & apply concepts of Simulation to optimize practical problems.

UNIT – I Introduction to OR:

Origin of OR and its definition. Concept of optimizing performance measure, Types of OR problems, Deterministic vs. Stochastic optimization, Phases of OR problem approach – problem formulation, building mathematical model, deriving solutions, validating model, controlling and implementing solution.

UNIT – II Linear Programming:

Linear programming – Examples from industrial cases, formulation & definitions, Matrix form. Implicit assumptions of LPP. Some basic concepts and results of linear algebra – Vectors, Matrices, Linear Independence/Dependence of vectors, Rank, Basis, System of linear eqns., Hyperplane, Convex set, Convex polyhedron, Extreme points, Basic feasible solutions. Geometric method: 2variable case, Special cases – infeasibility, unboundedness, redundancy °eneracy, Sensitivity analysis. Simplex Algorithm – slack, surplus & artificial variables, computational details, big-M method, identification and resolution of special cases through simplex iterations. Duality – formulation, results, fundamental theorem of duality, dual-simplex and primal-dual algorithms

UNIT – III: Transportation and Assignment problems:

TP - Examples, Definitions – decision variables, supply & demand constraints, formulation, Balanced & unbalanced situations, Solution methods – NWCR, minimum cost and VAM, test for optimality(MODI method), degeneracy and its resolution. AP - Examples, Definitions – decision variables, constraints, formulation, Balanced & unbalanced situations, Solution method – Hungarian, test for optimality (MODI method), degeneracy & its resolution.

UNIT – IV PERT – CPM:

Project definition, Project scheduling techniques - Gantt chart, PERT & CPM, Determination of

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

critical paths, Estimation of Project time and its variance in PERT using statistical principles, Concept of project crashing/time-cost trade-off.

UNIT – V: Inventory Control:

Functions of inventory and its disadvantages, ABC analysis, Concept of inventory costs, Basics of inventory policy (order, lead time, types), Fixed order-quantity models – EOQ, POQ & Quantity discount models. EOQ models for discrete units, sensitivity analysis and Robustness, Special cases of EOQ models for safety stock with known/unknown stock out situations, models under prescribed policy, Probabilistic situations.

Text Books:

S. No.	Title	Author(s)	Publisher
1	Operations Research:	An Introduction. H.A. Taha.	

S. No.	Title	Author(s)	Publisher
1	Linear Programming.	K.G. Murthy.	
2	Linear Programming.	G. Hadley.	
3	Principles of OR with Application to Managerial Decisions.	H.M. Wagner.	

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

SH	IRI SHANKARACHA Bhilai (C		剤 श्री ।	शंकरा	चार्य टेव मिलाई (सन	जीकत कैम्पस _{तीरगड})
	An Autono	omous Institute (Shri Gangajali E	fucation Society) 1999		/ स्वशासी	संस्थान \
	Approved by Affiliated to CSV To	AICTE, New Delhi All B Tech Courses'Accr ochnical University, Bhilai Accredited by NA	edited by NBA, Nev AC with "A" Grade	v Delhi	NIRF-2020 Ran An ISO 9001:2015	k (Band 251-300) Certified Institution
	Subject Code CS112406	Introduction To Innovation, IP Management & Entrepreneurship	L = 3	T = 0	P = 0	Credits = 2
		ESE	СТ	ТА	Total	ESE Duration
Exa	Examination	80	20	25	125	3 Hours
Scheme		Minimum number of class tests to be conducted=02		Minimum Assignments=02		

Course Objectives	Course Outcomes

UNIT – I Innovation: What and Why

Innovation as a core business process, Sources of innovation, Knowledge push vs. need pull innovations. Class Discussion- Is innovation manageable or just a random gambling activity?

UNIT – II Building an Innovative Organization

Creating new products and services, Exploiting open innovation and collaboration, Use of innovation for starting a new venture Class Discussion- Innovation: Co-operating across networks vs. 'go-it-alone' approach

UNIT – III Entrepreneurship:

- Opportunity recognition and entry strategies
- Entrepreneurship as a Style of Management
- Maintaining Competitive Advantage- Use of IPR to protect Innovation

UNIT – IV Entrepreneurship- Financial Planning:

- Financial Projections and Valuation
- Stages of financing
- Debt, Venture Capital and other forms of Financing

UNIT – V Intellectual Property Rights (IPR)

- Introduction and the economics behind development of IPR: Business Perspective
- IPR in India Genesis and Development

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

SHRI SHANKARACHARYA TECHNICAL CAMPUS Bhilai (Chhattisgarh)

> An Autonomous Institute Approved by AICTE, New Delhi Affiliated to CSV Technical University, Bhilai

All B Tech Courses Accredited by NBA, New Delhi Accredited by NAAC with "A" Grade

े **शंकराचार्य टेवजीकल कॅम्पस** मिलाई (छल्तीसगढ़) ' / स्वशासी संस्थान \

NIRF-2020 Rank (Band 251-300) An ISO 9001:2015 Certified Institution

- International Context
- Concept of IP Management, Use in marketing

Types of Intellectual Property

- Patent- Procedure, Licensing and Assignment, Infringement and Penalty
- Trademark- Use in marketing, example of trademarks- Domain name
- Geographical Indications- What is GI, Why protect them?
- Copyright- What is copyright

Industrial Designs- What is design? How to protect?

Text Books:

S. No.	Title	Author(s)	Publisher
1	Managing Innovation: Integrating Technological, Market and Organizational Change	Joe Tidd, John Bessant.	
2	Case Study Materials: To be distributed for class discussion		

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

SHRI SHAM	KARACHA Bhilai (C	RYA TECHNICAL hhattisgarh) mous Institute	CAMPUS	sation Society)	शंकरा	वार्थ टेवर गिलाई (कर / स्वशासी	नीकल कॅम्पस तीसगढ़) संस्थान \
A	Approved by filiated to CSV Te	AICTE, New Delhi chnical University, Bhilai	All B Tech Courses'Accre Accredited by NAA	dited by NBA, Nev C with "A" Grade	w Delhi	NIRF-2020 Ran An ISO 9001:2015	k (Band 251-300) Certified Institution
Subjec CS11	ct Code 12491	Design And Algorith	Analysis Of ms Lab	L =	T = 0	P = 02	Credits = 1
		ES	SE	СТ	TA	Total	ESE Duration
Examination Scheme	40		-	20	60	-	
	Minimum number of class tests to be			be	Minimum		
			conducted=02			Assi	gnments=02

Experiments

- 1. Sort a given set of elements using the Bubble sort method and determine the time required to sort the elements.
- 2. Sort a given set of elements using the Quick sort method and determine the time required to sort the elements.
- 3. Implement a Merge Sort algorithm to sort a given set of elements and determine the time required to sort the elements.
- 4. Implement a Insertion Sort algorithm to sort a given set of elements and determine the time required to sort the elements.
- 5. Implement recursive binary search and determine the time required to search an element.
- 6. Implement Linear search and determine the time required to search an element.
- 7. Check whether a given graph is connected or not using DFS method.
- 8. Print all the nodes reachable from a given starting node in a digraph using BFS method.
- 9. Find Minimum Cost Spanning Tree of a given undirected graph using Prim's algorithm.
- 10. Implement All-Pairs Shortest Paths Problem using Floyd's algorithm.
- 11. Implement N Queen's problem using Back Tracking.

12. From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm.

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

Bhilai (Chhattisgarh)

शंकराचार्य टेक्नीकल कैम्पस ^{भिदाई} (धनीसगद)

An Autonomous Institute Approved by AICTE, New Delhi Affiliated to CSV Technical University, Bhilai

All B Tech Courses'Accredited by NBA, New Delhi Accredited by NAAC with "A" Grade / स्वशासी संस्थान \ NIRF-2020 Rank (Band 251-300) An ISO 9001:2015 Certified Institution

Subject Code CS112492	Operating Systems Lab (Unix Environment)	L =	T = 0	P = 02	Credits = 1
	ESE	СТ	ТА	Total	ESE Duration
Examination	40 - 20		20	60	-
Scheme	Minimum number of class tests to be conducted=02			Minimum	Assignments=02

Course Outcomes
CO1 Students will be able to Work confidently in Unix/Linux environment
CO2 Students will able to Write shell scripts to automate various tasks
CO3 Students will understand different commands on Unix and its usage
CO4 Students will be able to describe and use
thefundamental UNIX system tools and utilities
CO5 Students will understand different kernel algorithmsand its usage

- 1. Unix commands (files directory, data manipulation, network communication etc), shell programming and vi editor
- 2. C program implementation of the following:
 - a. Scheduling Algorithms
 - b. Shared memory
 - c. Thread and Multi Thread
 - d. Inter Process Communication
 - e. Deadlock Avoidance and Deadlock Detection
 - f. Semaphore
 - g. Memory Management
 - h. Indexing and Hashing

Text Books:

1. Operating System Concepts Essentials. Abraham Silberschatz, Peter Baer Galvin and Greg Gagne.

- 1. Operating Systems: Internals and Design Principles. William Stallings.
- 2. Operating System: A Design-oriented Approach. Charles Patrick Crowley.
- 3. Operating Systems: A Modern Perspective. Gary J. Nutt.
- 4. Design of the Unix Operating Systems. Maurice J. Bach.
- 5. Understanding the Linux Kernel, Daniel Pierre Bovet, rco CesatiMa.

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

SHRI SHANKARACH Bhilai		श्री	शंकरा	चार्थ टेव मिलाई (सर	जीकत कैम्प्स _{तीरगद} ्र
An Autor	omous Institute	Education Society) td, 1999		/ स्वशासी	संस्थान \
Approved I Affiliated to CSV	by AICTE, New Delhi Ali B Tech Courses'Ac Fechnical University, Bhilai Accredited by I	credited by NBA, New NAAC with "A" Grade	w Delhi	NIRF-2020 Ran An ISO 9001:2015	k (Band 251-300) Certified Institution
Subject Code CS112493	Software Engineering Lab	L =	T = 0	P = 2	Credits = 1
	ESE	СТ	ТА	Total	ESE Duration
Examination	40	-	20	60	-
Scheme	Minimum number of cla conducted=	iss tests to k 02	be	Minimum	Assignments=02

Laboratory

- Development of requirements specification, function oriented design using SA/SD,
- Object-oriented design using UML, test case design, implementation using C++ and testing.
- Use of appropriate CASE tools and other tools such as configuration management tools, program analysis tools in the software life cycle.

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

Bhilai (Chhattisgarh)

All B Tech Courses Accredited by NBA, New Delhi Accredited by NAAC with "A" Grade / स्वशासी संस्थान \ NIRF-2020 Rank (Band 251-300)

शंकराचार्य टेक्नीकल कैम्पस

मिताई (छत्तीसगढ़)

An ISO 9001:2015 Certified Institution

Subject Code CS112494	Operations Research Lab	L =	T = 0	P = 02	Credits = 1
	ESE	СТ	ТА	Total	ESE Duration
Examination	40 - 20			60	-
Scheme	Minimum number of class tests to be conducted=02			Minimum	Assignments=02

- 1. Formulation of linear programming problems.
- 2. Solution of linear programming problem using graphical method with:
 - i. Multiple constraints
 - ii. Unbounded solution
 - iii. Infeasible solution
 - iv. Alternative or multiple solution
- 3. Enumeration of all basic solutions for linear programming problem.
- 4. Solution of linear programming problem with simplex method.
- 5. Problem solving using Big M method.
- 6. Problem solving using two phase method.
- 7. Solution on primal problem as well as dual problem.
- 8. Solution based on dual simplex method.
- 9. Verification of weak duality, strong duality and complementary slackness property.
- 10. Solution of transportation problem.
- 11. Solution of assignment problem.
- 12. Solution of integer programming problem using Branch and Bound method.
- 13. Solution of integer programming problem using Gomory's cutting plane method.
- 14. Simulation: Random number generation.
- 15. Monte Carlo method.
- 16. Performance measures for M/M/1 queuing model.
- 17. ABC analysis.
- 18. Inventory model.

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards